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ABSTRACT

The Fokker-Planck equation has often been used to describe the
distribution of a particle in a random field. When such a technique is
applied to a plasma in order to obtain a kinetic equation, certain
difficulties arise. In the first place, the electric field must be
determined consistently and the coefficients cannot be found explicitly
without further assumptions which may not be consistent. Previously
various attempts have been made to find the coefficients including the
use of the collision concept by means of the Boltzmann equation and the
BBGKY theory. In certain cases, this amounts to a manipulation of a
kinetic equation into the form of a Fokker-Planck equation. Moreover,
the coefficients are given as averages of functionals of the random
field. A naive interpretation of these averages, however, gives in-
correct result.

In view of these difficulties, a new formulation of the Fokker-
Planck method is established. It is observed that the coefficients
actually involve conditional averages of functionals of the random field.
Furthermore, just as a Fokker-Planck equation can be used to describe
the lowest distribution, similar equations can also be used to describe
higher distributions. Such a set of equations is called generalized
stochastic (or generalized Fokker-Planck) equations following Stratonovich.
These equations are applicable to systems perturbed by small random
forces provided sufficient knowledge regarding the unperturbed system is
available. When the random forces are specified statistically, the
generalized stochastic equations give immediate results. In this respect,

of particular interest in plasma application, is the heating of electrons
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by random electric fields. For the Coulomb potential problem in which
the electric field has to be determined consistently, it is possible to
decouple the set of generalized equations by using a cluster expansion.
The coefficients can then be found explicitly resulting in a kinetic
equation. The results indicate that the use of a Vlasov equation in
finding the polarization effect is essentiélly justified. The polari-
zation effect is seen to be the consequence of the condition imposed on
the average in evaluating the coefficient. Unlike the test particle
theory, however, no test particle is artificially introduced. Finally,
a similarity is observed between the set of generalized stochastic
equations and the BBGKY hierarchy. Closer examination reveals that the
BBGKY hierarchy may be regarded, in a sense, as a special mode of

generalized stochastic equations.
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I. JINTRODUCTION

The Fokker-Planck equation has often been used to describe the
distribution of a particle in a random field. If the distribution is
spatially homogeneous, the Fokker-Planck equation has the following

forml

3f(v,t) - R\ 1 3 (Av)
ot v At 2 2 At

where v is the velocity of the particle, Av is the increment of velocity

in an increment of time At, and f is the velocity distribution. The

2
. s Av (Av)
coefficlents < Z¥->’ < AT

> may be found in terms of the random
field.l When applied to the case of a spatially homogeneous plasma,
certain difficulties arise. In the first place, the electric field
must be determined consistently and the coefficients cannot be found
explicitly without further assumptions. Moreover, the polarization
effect2 cannot be obtained if the average operator < > is interpreted
in a naive manner. To find the coefficients Gasiorowicz, et al.,2 use
the Vlasov equation for the polarization effect and a Holtsmark
distribution for the fluctuation of the electric field. It is not
clear how this can be done since this may lead to inconsistency.

We observe that the coefficients are actually average values of
functionals of the random field under certain conditions. Furthermore
just as a Fokker-Planck equation can be used to describe the distribution
of the particle, similar equations can also be used to describe higher
distributions. Such a set of equations is called generalized stochastic

(or generalized Fokker-Planck) equations. When applied to a plasma,




these equations replacing the BBGKY hierarchy can be decoupled by using
a cluster expansion to determine the coefficients.

In Chapter II, the generalized stochastic equations for a system
with only small random forces are derived by modifying Stratonovich's3
results. For systems having additional forces which are not small,
reduction is possible through a suitable transformation provided sufficient
knowledge regarding the unperturbed systems is available. This is con-
sidered in Chapter III. Some examples in which the random forces are
assumed to be specified are given in Chapter IV. In Chapter V the
Coulomb potential problem is considered with generalized stochastic
equations replacing the BBGKY hierarchy. Using a cluster expansion to
decouple the equations and freezing the lowest distribution in the
evaluation of higher distributions, the Fokker-Planck or kinetic equations
for a plasma are obtained. Although the mathematics involved in this
case is close to that in the BBGKY thecory, the starting point is
different. It can be seen, however, that the BBGKY hierarchy may be

regarded as a special form of generalized stochastic equations.




II. DERIVATION OF GENERALIZED STOCHASTIC EQUATIONS
It is known that the fluctuation equation
x = eP(x,t) (2.1)

leads to a Fokker-Planck type equation

2 0 2 0
Bl,t) L e & py - 22 KiEE, P lar w o+ 22 | KIFLF 1dt @ + 0(e%)
ot X 2 ox’ "t 2 T
% 9x Tt
-t
(2.2)
where T = F(x,t), FT = F(x,t+1t), and K stands for the correlation

function. The force F as well as the initial value of X are random, and
w represents the probability density of x at t. Stratonovich3 gives a
detailed derivation for a system of equations in the form of (2.1). It
seems that, however, he has not taken into account of the correlation
between the force and the initial distribution of x. To account for
this, we generalize his results and obtain equations similar to (2.2)
which we shall refer to as the generalized stochastic equations following
Stratonovich.

Before we indicate how Stratonovich's results can be modified and
generalized, a few remarks concerning notations are in order. In the
mathematical literature, a random variable is often denoted by a capital
letter. Thus, X(t) or Xt represents a family of random variables
indexed by t, a parameter, whereas lower cases are used to denote real
numbers. Unfortunately, in the engineering literature, usually no such
distinctions are made. Thus, the expected value of F(X(0),t) given

X(0) = x, where F(*,t) is a random function, can be unambiguously




expressed as < F(X(0),t) / X(0) = x> 8 <F(x,t) / X(0) = x>, It would be
extremely confusing if not impossible to express such a functional without
using the caéital letters for random variable convention. To compromise,
we shall follow the engineering literature except in situations where

it is essential to distinguish a random variable from a real number.

Thus, to emphasize that x(t) is a random function, we may write X(t)
instead, and X(t) = x means that the random variable X(t) assumes the

value of x.

2.1 Stratonovich's Derivation

We now review Stratonovich's derivation briefly. Consult

. 3 . . . .
Stratonivch for details. The equation of interest is

x = eF(x,t) (2.3)
with the initial condition
x(0) = X (2.4)

Write the increment by

- 2 -
x(t) - Xg = eZl + € 22 + ... = 2 (2.5)
and expand F(x,t) as follows
EF(X,t) = eF(X.st) + €262, + vuu) + ... (2.6)
? 0°? ax 1
One then finds
t
zl = F(xo,t), or Zl(xo,t) = JOF(xo,tl)dtl
t t
2o = gl s or Zy(xg,t) = Odtzé}{xo’tQ) Io F(xg,t,)dt, ete. +7)




The characteristic function of the random increment

z(t) = x(t) - X (2.8)
is
® (iw) n
¢ (uw) =1 +1: — <Z > (2.9)
Z(t) =] D
Inverting
. ® . .n
gy (2/X(0)=x,) = %g-Je'luz[l DRV P
m n=1 .
@© n
=i+ -2 <2Is(2) (2.10)
n=ln 9%

where wz(t)(z/X(O)sz) is the probability density of Z(t), given X(0)
= Xy, and we shall write as wZ(t)(z/xo) when confusion is not likely to

arise. Now

wx(t)(x/xo) = wz(t)(x—xo/xo)

oo n
[1 45 = (- 2 <2™(x.,t)>18(x-x.) (2.11)
n=1™ X 0 0

Averaging over X

3 n
(x) = [1 + - =) <z (x,t)>Jw
X

n

wX(t) ~ X(O)(X) = [l+L]wX(O)(X)

1

H ™ 8

(2.12)

where L is defined by (2.12). Using the more familiar notations

wix,t) = (%)

Yy (t)

(x)

w(x,0) = Wy 0)




we have

w(x,t) = (1+L) w(x,0) (2.13)

Taking partial derivative with respect to time in (2.13) and substituting

w(x,0) by taking inverse of (2.13), we obtain

§9i§%11 = D(1+D) 7Y w(x,t) (2.14)

Expanding L(l+L)_l, Equation(2.2 is obtained. Details are given by

. 3
Stratonovich.

2.2 Need for Conditional Averages

It appears that Stratonovich has assumed that F is not affected by
the initial specification of X*. Otherwise the averages in the charac-
teristic function and hence i,(l+L)_l should be conditional averages.
This modification is extremely important in the Coulomb potential
problem as we shall see in Chapter V. 1In order to show how the modifi-
cation comes about we first introduce the conditional characteristic
functions.

Let Y,Z be random variables. Define the conditional characteristic

function ¢Z(u/Y=y) as the conditional average of e1VZ given Y = y.

That is
iuZ
6, (u/¥zy) = <™ v=y>
- [o392% Corveaz (2.15)
J

Gu"”

=1+ 5 22 oM y=ys (2.16)
n ;

If F does not depend on t ewplicitly, the results are correct.




where < /Y=y> denotes the expected value given Y = y. Obviously, y

enters only as a parameter so that the inversion is

_ . 1| _-iuz _
wZ(z/Y-y) = 5 [e ¢Z(u/Y-y)du
1 -iuz T i n
i e (1 +¢2 —_— <Z /Y=y>]du
i n!
n=l
® 1 5. " n
= [1+ I = (-=2) <z /Y=y>16(z) (2.17)
n=1 n! 9z

Similarly, if Y' is another random variable, then

n

i'(_ _3_) <Zn/Y:y’ Y':y'>]5(z) (2.18)

wlz/tzy, Y'zy') = L+ I ol g

n

H o8

1

This shows that it is sufficient to replace the averages in the L
operator in (2.14) with the proper conditional averages. In details,

suppose we have random variables X, Y, Z such that
X-Y-=12 (2.19)

Then wX(X/Y=y) = wz(x—y/Y=y)

[ n
o [1+3 _} (- 2y <z Y=y>16(x-y) (2.20)
n! ox
n=1
Averaging over Y,
[ n
w,(x) = [1 + 2 —l-(— —aﬁ <2 /Y=x>7 w,(x) (2.21)
X nel n! Ix ‘ Y




If we put X @ X(t), Y = X(0), with wX(x) = w(x,thY(y) = w(y,0), we have

8

n
1
w(x,t) = [L+ 3 == (- =) <z"/X(0)=x>] w(x,0) (2.22)
_, n! x
n=1
which is Stratonovich's result with the conditional average <z"/%(0)=x>
instead of just <z"s.
Comparing (2.22) with (2.13), we see that the operator L in (2.13)
should be modified to L with <Zn/X(O)=x> replacing <z™>. In order to

bring out the formal differences due to this modification, let us write

out the equation corresponding to (2.14) by using the modified operator

L. We have
08 < B+ D7 utx,t) (2.23)
Here
= ® 1 9 n n
(L+L)=1+ & —4(-=) <Z/X(0)=x> (2.24)
n! 9X
n=1l
where
Z = eZ. + e2Z + ... (2.25)
1 2 *
Hence,
s 3 : _ 2 9 ¢ _
L = - €-é—x' <Zl/x(o)"x> - € g}z <Z2/X(O)—X>
2

+ e2(- §;> <2,2,/X(0)=> + 0(e%) (2.26)




and

(1 +

Combining (2.26)

L(1 + L)

-1

Dt e 1.1+ 06ed)

= 1 —e(- %) <2 /X(0)=x> + 0(e?) (2.27)
and (2.27)

- ¢ —2-<il/x(0)=x> - 52

a .
% 7% <Lp/X(0)=x>

2
9 y _
e (- 5;0 <ZlZl/X(0)-x>

3., . 3
e (- 52) <Z/X(0)=x> (- 5;) <Zl/X(0)=x>

0 (&) (2.28)
(- a—i—)<sil + eQZ'Q/X(O)=x>
2
3 2s _
(- ﬂ) <g ZlZl/X(O)—x>
3

] . _ _
5;{—)(— &-) <eZl/X(O)—x> <eZl/X(0)-x>

(- 5%9 [(- 5%) <eil/X(0)=x>] <ng/X(O)=X>
0(e?)

3 . -
e(- 5;0 <Zl/X(O)-x>

2 3.2 .
e (- a—x) K[Zl,Zl/X(0)=x]
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+ 52(— %) <i2/X(0)=x>
F 2= Y (- =) <z /x(0)=x>] <Z./X(0)=x>
oK X 1 =X 1 -

+ 0(ed) (2.29)

where K[A,B/X(0)=x] = <AB/X(0)=x> - <A/X(0)=x> <B/X(0)=x>. From (2.7)

we substitute the functions Zl’ 22, and find that

(L + i)'l = e(- 33;) <F(x,t)/X(0) = x>
t
2 5.2
+ (- 'a_i) J K[F(x,t), F(x,tl)/X(O) = x]cl'cl
0
t
2 ) dF(x,t) _
+ e (- —3—;) J<FT F(X,tl)/X(o) = x> dtl
0
€
+e2(- 52 [(- =) <E(x,0)/X(0) = %>] J<F(x,tl)/x(0)=x> at,
0
+ 0(53) (2.30)

If F is not affected by the specification of X(0), the third and fourth

terms on the right hand side of (2.30) combine to give

t

2 ) IF(x,t)
e (- g{') J K[——B-X—’ F(X,‘tl)] dtl
0

as given by Stratonovich. However, we cannot do so in general. Thus,

to second order, (2.23) gives the desired equation
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t
E‘s’i_x’_ﬂ Y 5% [<F(x,t)/X(0)=x> + ¢ J < B—F%‘-;-t—)- P(x,t,)/X(0)=x> dt,]
0
2t
+ 82'—35 f K[F(x,t), F(x,tl)/X(0)=x]dtl
X
0
t
+ €2 -a-?; [a—i- <F(x,t)/X(0)=x>] J <F(x,)/X(0)=x> 4t 4 w(x,1)
0
(2.31)

We remark here that in the cases we consider later, the last term
contributes to terms of order higher than second and hence can be

ignored.

2.3 Generalization to Higher Density Functions and to Higher Dimensions

Above results can be easily generalized to higher density functions
and to higher dimensions.

Let w (/X' (") = x') = w(x,t/x",t"') be the probability density

X(t)
of X(t) = x given X'(t') = x'. Here X'(t') is another random function.

Equation (2.31) can be applied to the present case, provided we impose

the condition X'(t') = x' on all averages. This can be seen from

Equation (2.18) with Y = X(0), Y' = X'(t') where Z is again defined by

the system (2.3) and

"
N

X(t) - X(0)




12

Thus,
wx(t)(x/X(O) = Xy X'(t') = x")
= wz(x-xo/X(O) = Xy X'(t') = x")
w n
RN 2 <a/%(0) = xg, X' (t)=xo] 6 (x-x) (2.32)

n=1

Multiplying by wx(o)(xo/X'(t') = x') and integrating over Xqs

wX(t)(x/X'(t') = x') = wlx,t/x',t")
> P n n
=[1+z¢ (- 5—0 <Z7/X(0)=x, X'(t') = x'>] Wy (o (x/X'¢') = x")
n=1 X )
> 3 0 n
=1+ (- 5;) <2 /X(0)=x, X'(t') = x'">] w(x,0/x',t")
n=1

(2.33)

Comparing (2.33) with (2.22), we see that the results are formally the
same provided we impose the condition X'(t') = x'. Thus, (2.33) can be

rewritten as

w(X,t/x",t') = (1 + ix,) w(X,0/x",t") (2.34)

Since the condition X'(t') = x' enters as only a parameter, it does not

have any effect on the manipulation of ix'(l + ix,)—l. Hence, (2.31)

with the extra condition X'(t') = x' is the equation for w(x,t/x',t').
The results can also be generalized in a straight forward manner

to multi-dimensional cases.° Thus, if instead of (2.3), we have
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ﬁj = Fj(x,t) 831, 2, ..., N (2.3a)

where

x = (%,,%

1°%p2 o Xy
The generalization of (2.31) is

0

Bule,®) _f ¢ B e /x(0)=xo + ¢« 3 p pu(oyens dn)
5t 1 & . - € 3%, kT wx> at
j k
-t
2 82 °
+ & — ( K[F.,F, /X(0)=x]dT
Bx.axk J 7 kT
J “t
0
2 23 d
+ & +— [g— <F./X(0)=x>] <F_ _/X(0)=x>d1} w (2.31a)
9x. 9x 3 k1
j k
-t
Here Fj = Fj(x,t), Fkr = Fkr(x’t + 1), j,k=1,2, ..., N, and the

conventicn of summation index has been used.

To summarize, we have shown in this chapter how Stratonovich's
results can be generalized so that the small random forces may not be
independent of the initial distribution. This allows us to consider
self-consistent forces other than applied external forces. Furthermore,
higher density functions also satisfy similar equations. Thus, the
process can be studied by using such a series of equations which we may
call generalized stochastic (or Fokker-Planck) equations. They are

given by (2.31) and the appropriate generalizations.
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ITI. GENERALIZED STOCHASTIC EQUATIONS FOR SYSTEMS PERTURBED
BY RANDOM FORCES

In the previous chapter, we deal with a system of differential

equations of the form:
x = ¢F

In other words, the "random force'" is small for such systems. In this
chapter, we wish to study the effect of additional deterministic forces
which are not small, while assuming we have sufficient knowledge regarding

the system without the small random forces.

3.1 General Theorems in Differential Equations

We begin by collecting some relevant results in differential

5 . . . . . .
’ In this section we will use the Einstein summation

equations.
convention. Furthermore, an explicit notation for vectors will not be
used since the vector property does not play a significant roll except
in dot products where we use the summation convention. Thus, if we are
dealing with an N-dimensional space, by x we shall mean the N-tuple

(x

%,.), and by w(t,to,xo), we shall mean the N-tuple

1>t Xy

(wl(t,to,xo), e wN(t,tO,x)). Here t is the scaler time. Thus,

Equation(2.3a) under this convention becomes

x = eF(x,t)
which has the same appearance as (2.3).

Consider the system

x @ F(x,t) (3.1)

Under appropriate conditions (such as the Lipschitz condition) on F,
there is a unique solution x = Y(t) for each pair (to,xo) as initial

conditions. Thus, there is a function w(t,to,xo) such that it satisfies
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(3.1) and ¥(t sty ) = X Under appropriate cenditions (such as
F.  Q3F.
existence of ——l,-——l) the first partial derivatives of Y(t,t.,x.) exist.
axk at 0°°0
Theorem 1
a(wl, cees Uy)
Define J = G 5
B(Xl, ey XN) (3.2)
oF,

Then — = J ——l-along each solution and,hence, J= 1 if and only if
SF dt ij

The proof is available in standard literatureu and will be omitted.

In the cases we will be interested in, this can also be directly verified.

Theorem 2

. 3
In case of an autonomous system (i.e., i Q),

s}

|

(o34

Pt + t, ty + t, xO) = p(t, ty xO)

p(t - t., 0, %)
0 0 (3.3)

Proof: Let V(t) be a solution through (O,XO). Define U(t)

1"

v(t—to).

Then U(t) is a solution through (to,xo). But by the definition of

w(t,to,xo), we have V(t) w(t,O,xo), and U(t) = w(t,to,xo). Hence,

Plt,tsxy) = U(t) = V{t-t ) 8 $(t-t;,0,%,) (3.4)
Replacing t by t + t, ty by ty * t in (3.4), we have
it + T, t, + t, xO) = y(t - tys 0, xo) (3.5)
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Hence
it + t, ty + t, xo) = ¥t - ty, 0, x,)
= w(t,to,xo)
Theorem 3
w(t,to,xo) = w(t,tl,w(tl,to,xo)) (3.86)

Proof: w(t,to,xo) is a solution through (tl,w(tl,to,xo)).
w(t,tl,w(tl,to,xo)) is a solution through the same point, since
W(tl,tl,w(tl,to,xo)) = w(tl,to,xo) by the definition of $. By uniqueness,

these two solutions are identical.

Theorem U

The following is a transform pair for each t, toe

bd
1

= w(t3t0 ’y)

(3.7)

y = v(tyst,x)

Proof: Given y, x is uniquely determined by x = w(t,to,y). Suppose

there are ¥y ¥y such that for given x

®
i

= Y(t,t )

x
1

0°Y2

Then Y(t,t ) = ¥(t,t,,y,) since both are solution through (t,x). 1In

01
particular W(to,to,yl) =y, = w(to,to,yz) = ¥,- By Theorem 3,

X = w(tQto’y) = w(t to’w(toatSX))

and the proof is therefore complete.
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Note that in autonomous case, we may as well choose ty = 0, in
Theorem 4 and write
x = P(t,0,y) = A(t,y)
y = 9(0,t,%) = AT (t,%) (3.8)
Corollary
In case of an autonomous system, then
A(t,x) = A'l(—t,x) (3.9)
and
A(t+o,x'l(t,x)) = A(0,x) (3.10)

Proof: (3.9) can be readily shown to be true by applying Theorem 2. To

prove (3.10) we apply Theorem 3. By Theorem 3,

Y(t+o,0,9(0,t,x)) = P(t+o,t,x)

Y(0,0,x)

which gives (3.10).
Theorem 3 has the following consequence in partial differentiations.

Since wj(to,t+o,x) = wj(to,t,w(t,t+o,x)) we have

Y. oY, Y
= o e (3.11)
k to,t + 0,X [} to,t,w(t,t + 0,X) kit,t + o,x

In the autonomous case, if A—l(t,x) is a linear function of x for each

t, then axj—l BA.—l a -1
Bxk t+o0 axl t axk o (3.12)
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where A—l is defined as in (3.8). Since A-l is assumed to be linear in
X, aA_l/Bx is independent of x and hence the subscript x in (3.12) is

omitted.

Theorem 5

?
i 0 + F (x,t)s=2 = 0 (3.13)
Proof: wj(to,t,w(t,to,xo)) o xjO by Theorem 3. Hence,

!
0 = ’d? U)j(to,t ,w(tstosxo))

1t

a3
'a—.t' \Uj(toat ,UJ(‘C :tosxo))

Bw.(to,t,w(t,to,xo))
) at) e
Bxk

-+

Fk(w(t,to

Since the left hand side is independent of x we may replace w(t,to,xo)

OS
by x (e.g., by choosing Xy = w(to,t,x)). (3.13) then follows. More
generally f(w(to,t,x)) satisfies (3.13) where f is arbitrary. Thus
the partial differential Equation(3.13with initial condition f(x) has

f(w(to,t,x)) as its solution.

Finally we evaluate an expression needed later. Now

_a_w_(tatoa}’)

3t = F(U)(t,to,y)at)

so that
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oY

ot
t,to,w(to,t,x)

P(w(t,toaw(toat,x)),t)

F(y(t,t,x),t)

F(x,t) (3.14)

3.2 Systems Perturbed by Random Forces

We now consider the system (3.1) under the influence of small

random forces. Let the perturbed system be described by
. O .
xj = Fj + EFj(x,t) i =1, ..., N (3.15)

We shall for simplicity, assume Fg does not depend on t explicitly,

so that the associated system in the unperturbed state

x. = rO(x) (3.16)
] ]

is autonomous.

Let Xj(t,to,xo) be the solution of (3.16) with Xj(to,to,xo) = XOj'

0,x.), we shall choose t, = 0 and just write

Since Aj(t,to,xo) = Aj(t_to’ sX 0

Aj(t,xo). Because of Theorem 4, we can define the transformation pair

{ T t t

n
—

Aj—l(t,x) X.

<
f

xj(r,y) (3.17)

where Aj_l(t,x) = Aj(—t,x) according to (3.19). Equation(3.1W is trans-

formed to




-1 -1

. ) )
FiLM e, Par
drt ot dr 3xk dt dr
an. Y LTt ax
S R k
9t axk dt
0, 1 . axj'l 28 1
=t Fk ™ + € axk Fk (3.19)
By Theorem 5,
ar. 7t 0 ax, T
+ F, —=— = 0
dt k 93x
k
so that
. aAj‘l
ar ¢ axk Fk (3.20)

Thus system (3.15) goes to the system (3.20) in which the forces are
small. In (3.20) we should have x and t in terms of y, 1 using (3.17).

We shall do this explicitly only for F. Defining

F(y,1) = F(A(1,y),1) (3.21)
Equation (3.20)becomes
-1
dy DN
L L
= .2
T T F (y,0) (3.22)

Therefore the zeroth order non-random force in (3.15) can be transformed

away through (3.17). The resulting equation (3.22) has the identical form
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as the one studied in the last chapter. We shall now apply these

results to our present system.

Let wY(y,T) be the density of y at 1. From Equation(2.31la):

ax, T
9 w,(y,t) _ ) i _
3T ¥ - TE dy . “Bx. Eﬁ/Y(O) =Y Uy
1 ]
2 3 JO ox, T axj°l3
-f gy | doc /Y(0) = y>u
Byi a Bxk k axl '3 v
-1
0 -1 -1
2 A PN
g L 3 j ]
+ € RIS { do K[ % k’(ax J"QJ 0/Y(O) = y]wY
- R k 2
-1 0 -1
A, 3
2 3 R} 1 3- _ [ j } _
+ € xll Ty < T k/Y(O) = y> ) do <(3x i 0/Y(O)_y>wY
1 ] k - '3
(3.23)
where by ( )o’ we mean the function in the parenthesis is to be

evaluated at a time interval ¢ later. In order to transform (3.23) back
to variables x and t, we need several relations which we first derive
in the following.

Equation (3.23) is general and valid even if system (3.16) is non-
autonomous, provided we take the general transformation (3.7). In such
case, however, the equation will depend strongly on the initial time.
Considerable simplification results in a special but important case,

when (3.16) is linear with constant coefficient so that

-1 -1 . '
Xi (t,x) = Xij(t)xj i=1, ..., N (3.24)




-1 . . . .
where the Aij are scalar functions of t, forming a matrix which we shall

. -1 . . .
designate by € “(t). Thus in matrix notation

-1 -1
Q “(t) = ()\ij(t)) (3.25)

and (3.17) becomes

y = Q_l(t)x (3.26)

Since Aj—l(t,x) = Aj(—t,x), we can define Aij and Q(t) similarly by

relations

Ai(r,y) = Aij(T)yj (3.27)
and

x = 1)y (3.28)
where

(1) = (Aij(r)) (3.29)

Now we present some interesting properties. They are

. .(1) = XT%(—T) or Q—l(r) = Q(-1) (3.30)
1] 1]
ax 7t
. .
Pe— Ao, o= o=
ij - ok, ? i3 T 3y, (3.31)
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and
_ a1 _ -1 -1 _

Q(0) = 2 7(0) = a(r)e "(t) = @ "(0)alt) = Iy (3.32)
since Aj(O,xO) = XOj’ Here IN is the identity matrix. Theorem 1 then
asserts

det. @ = 1 = det. @ * (3.33)
3F"
if the hypothesis 5;1 = 0 is satisfied. This is always true since the
3
unperturbed system (3.15) is a conservative Hamiltonian system in the
cases we are interested in. Equation (3.12) implies that
it +0 = 2R o) (3.34)

= o o) )

For an arbitrary function H(y,t), we have the following chain rules:

ax .,

3H _ 3h (x,t) b —1 dh (x,t)

9T 2t 3T ij (3.35)
a1 _ M1 an(x,t)

0y Y5 9%y (3.36)

where h(x,t) = H(A_l(t,x),t)-

Using (3.13) and (3.31), (3.35) and (3.36) give

%ﬁ-= %%-+ FQ(x)ggh
T E : (3.37)
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%ﬂ—-- Ai.(t) E%E
Y3 . (3.38)
Also, we have
-1
wY(l (t,x),t) = wx(x,t) (3.39)

where wx(x,t) is the density of X(t) = x, because of (3.33). Using
(3.37) through (3.39), equation (3.23)can be transformed back to the

variables x,t. Thus, the left-hand side of (3.23) becomes:

BwY(y,T) wa(x,t) wa(x,t)

3T Y * Pj(x) ij (3.40)

The first term on the right side of (3.23):

-1
oA,
3 i 3. a
- € 5;; <3 j/Y(O) =y owy
_ 3 -1 -l
= - ¢ Akiaxk <Aij Fj/X(O) = X T(t,x)> wX(x,t)

) -1
=-eg— < Fj/X(O) = A T(t,x)> w

. X (3.41)
]

where we have made use of the fact that xij is a function of t alone,

-1
kitig ©
For the second term of (3.23):

. ,X(0) = Y(0).

and that Equation (3.32) implies X ij
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0 -1 1
oA, oA
.2 9 9 i 2 3 _
€ 3 I do <\ 557 Tix W | % 3}2 o/ Y(0) = y> wy
i 3 k [
-1
0
2 3 3 -1 -1 3,1
= - ¢ )‘mi(t)ﬂj do <)\nj(t)§; >‘ik (t)FkAjQ(tﬂj) 2()\ (t,x),t+a)/X(0)
-7
-1
= A T (E,x)> wy (3.42)
Now from (3.21)
F 070 t40) = B (A(t+0,0 T (8 ,%)), t40) = F(A(0,x),t+0) (3.43)
L 2 2
by (3.10).
Thus (3.42) simplifies to
2 3 ° °F 1 -1
-€ 5;—-J do <§§T Ail(o)Pz(A(o,x),t+c)/X(O) = X “(t,x)> Wy (3.44)
k i
-t
in which we have used (3.32) and (3.34).
For the third term in (3.23):
) 0 fax -1 axj'l
2 3 i 3 /=7 —
€53 J TS 7 o R
0
= el (t) =2 A ()= | do KIATZ(0)F, , AT:(t+0) F, (A(0,x),t+a)/X(0)
mi me nj axn ik k*> 748 2 e
-t

)\—l(t,x)]wX
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0
= € %’(—5%—[ 20 KIF ATy (0)F, (0,0 ,t40)/%(0) = A7 H (e, uy (5 45)
k 3 .
-t
For the last term in (3.23):
N -1 0
2 3 3 i }
i 3 k
—T
0
_ 2 d 3 -1 _ -1
=€ Amlﬁ_ D‘nj—a—x_ <>\ika/X(0) = A T(t,x)>] J do <A (t+o)F (A(o,x)t+c)
m n
-t
-1
/X(0) = & T(t,x)> Wy
0
29 3 -1
=€ 'é—[ <F, /X(0) = X ~(t,x)> ] J do <>\ (G)F (Ao ,x),t+a)/X(0)
X, OX. k
L S
-t
.-l
=AU ey (3.486)

Combining (3.40), (3.41), (3.44), (3.45) and (3.46),

dw dw
X 0 X _ 3 !
=+ Fj(x’t)_—ax. = - €3 <Fj/x(o) = ATT(E,%)> uy
J J
2 3 ° 3Fk —l
- € a— J do >\ (0)< F (X(O,x),‘t-t-c)/x(o) (t,x)> Wy
k *3
-t
0
2 ) 3 -1 B
+ € _axk _axj J dcle(c) K[Fk,FR(A(o,x),tw)/x(O) = A (t,x Wy

-t




27

0
2 9 .9 -1 -1
Pt R/XO0) = A ] j 4o A5y < Fy(M(0,%),t+0)/%(0)
] -t
N
= A (‘t,X)> wX (3.47)

In passing we remark that the basic idea is to transform system
(3.15) into a system (3.22) with only small forces which will permit us
to write down a stochastic equation. Such a transformation can be
effected through the integrals of the unperturbed system, and in our
case, this amounts to describing the system along its unperturbed orbits.
As is pointed out in the derivation, Equation (3.47) applies in cases
where (3.16) is linear with constant coefficients and ¥ is a conservative
force. 1If Fo is not conservative, there is then need of introducing a
Jacobian in (3.39) and consequently in (3.47).When (3.16) is non-linear
but still autonomous, we then have to go back to (3.23). In the most
general case when (3.16) is non-autonomous the A-transformation in (3.23)

should be replaced by the more general transformation (3.7).
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Iv. EXAMPLES FOR SPECIFIED RANDOM FORCES

In this chapter we consider some examples in which the random forces
are assumed to be specified. Of particular interest in plasma
application is the heating of electrons by random electric field.
Sturrockl'has considered the heating of electrons without reference to
the mechanism for generation of the random electric field. Puri7 has
performed an experiment in which a collisionless plasma is heated by
an electric field of a noisy generator. We obtain similar results by
using equations developed earlier. The random electric field may be
due to an incident plane wave and this is considered in the last

example.

4.1 Example 1. Charged Particle in a Weak Electric Field

Consider a charged particle with charge q, mass m, in an electric

field E(x,t) = - g%— where ¢ is the potential. Note that the electric

field is not a function of velocity. The equation of motion gives

X = v
(4.1)
v =3¢
m
If we normalize the equations by*
X =% X,
v =V Vv,
N (4.2)
t = EV—O—
0
$ = $_¢O

* We may choose the correlation time of the random field as the
characteristic time and the thermal velocity as the characteristic
velocity.
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where xo,vo,d)O are characteristic quantitites not to be confused with

initial values. Equation %.D in the normalized quantities is then

given by
dx
—~ Y
It
v ap, 9
T (—2') (- K) (1.3)
0
aé,
We express "weak field" by considering —% = 0(e). Formally then we
mv
0
can regard %—E in (4.1) as 0(e). This corresponds to Fi = v, Fg =0,
F, = 0, eF, & 3 E.
1 ? 2 m
-1
Also Xl (t, x, v) = x - vt
(u.u4)
-1
KQ (t, x, v) = v
-1 1 -t
or 2 (t) = (O N ) (4.5)

Using (3.47), we obtain the stochastic equation for the first example as

wa wa q 9
3t TV T a3 € E/X(0) = x - vt, V(0) = v > W,
WEE 3E
- (EJ 3;-—f do(-0) < §§-E(X + vo, t+0)/X(0) = x - vt,

t

v(0) = v > 0.
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2 39 9 0
(%) = == { do(~0) K[E,E(x + vo, t + 0)/X(0) =

0
[2- < E/X(0) = x - vt, V(0) = v >] [ do(-0)
-t

< E(x + vo, t + 0)/X(0) = x - vt, V(0) = v > w

+ (392 E-~-[§—-< E/X(0) = x - vt, V(0) B8 v >] f do
m ov oV %
< E(x + vo), t + 0)/X(0) = x - vt), V(O) = v > W
(4.6)
To compare with Sturrock's resultsl we assume the electric field is
external, with
< E(x,t) > = 0. (4.7)

The electric field is further assumed to be steady and homogeneous in

the statistical sense, i.e.

A

E(x,t) E(x + x', t + o) >

< E(0,0) E(x', o) >

K(x', o) (4.8)
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Let S(k,w)“ be the Fourier Transform of the correlation function K(x',o)
so that

i(kx' - wo)

K(x',0) = [[ dkdwe S(k,w)

-3 -
SGe,w) = (37 ] dxtdoe 0 =090y o) (4.9)
\.
Since we have an external field, the conditions on all averages in
(4.6)may be dropped. If we are interested in the spatially homogeneous

case where

2 -0 (4.10)

we find Equation 4.6) reduces to

0
2o (®H? L [ do(-0) < 9 p(x + vo, t+ 0) > w
m° v _t 9% X

0
f dg < E E(x + vo, t + o) > w, (4.11)
-t

23 9
m ov 3V

0 0
Now f do(-0) < %E-B(x + vo, t + g) >= f do(-0) %§-< EE(x + vo, t+0)>
-t -t

9 oE
- [ do(-0) < E 5;—(x tvo, t +0) >
-t

° 3E
=0+ [do<Eo T (x tvo, t+o) >
-t

* The w here stands for angular frequency and is not to be confused
with the probability density function.
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= [ do <E 9B (x + vo, t + o) >
v
-t
3 0
= 57 [ do < EE(x + vo, t + 0) > (4.12)
-t

in which we have used (4.7). The use of (%4.12) further reduces the

stochastic Equation (+.11) to

0w, .23 3 O
Fraialie (ﬁo 5;-(5;-—{ do < EE(x + vo, t + 0) >) .
2 9 9 0
+ (D S-S [do <EE(x +vo, t +0)>uw
m ov ov _t pd
dw 0
or X o (2 o d_
T (m) 5y _{ do < EE(%t + vo, t + o) > 57 Y%
295 9 3
= (3 2o [ do K(vo,0) = w (4.13)
m v “t v X
5 0
Defining D(v,t) = (%) f do K(vo,o) (4.14)
-t
we obtain finally the desired equation
ow
X ) 9
- 2 - L.15
ot v B(v,t) v Ux ( )
- Q42
Here D(v, t »=) =7 (1) [ ax s(k,vk) (4.16)

and by t > », we mean t much larger than the correlation time of E.

Equation 4.15)is a diffusion equation. It has been obtained also by
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Sturrock. The reader is referred to Sturrock for a discussion of some

of its properties.

4.2 Example 2. Charged Particle in a Weak Electric Field with a Constant

Magnetic Field

Consider a charged particle under the influence of a constant
magnetic field perpendicular to its plane of motion. A small random
external electric field is applied in the transverse direction as
shown in the figure. For simplicity we assume E is only a function of
time. The orientation of the magnetic field B and the electric field

E(t) is depicted in the figure.

3 Ey(t)
Ex(t)/
y
b
The equations of motion for the present problem are
r’x = v
x
v=uwv + g
<§ cy m'x
= v
y y
v = -wv +3E (4.17)
L; y cx my
- 4B
where W= == (4.18)
c m




3y

Formally we take %-E = 0(e) (4.19)
With Xy = X

X, =Y

x3 - Vx

XM = vy (4.20)
(4.,17) becomes

S |

X, %y

= q
x3 =W X, + - Ex
x = -wx, +3E (4.21)
4 ¢”3 m 'y

From the unperturbed system we obtain

sin w_t xuo[cos w.t - 1]

r&l(t,xlo,x2o,x30,xuo) = %9t X3q wc- o

- i t
- . E?O[cos wct 1] . X, sin wg
- %20 W w
c c

Ao (% 0% 00:%30% 10

= i t
) pd cos wct + X, sin o,

A (5%, 55 %002%30° %00 30

= - i 4,2
L\Au(t’xlO’XQO’X3O’XMO) X5 Sin Wt + X, cos w_t ( 2)




The Corollary (3.9) and Equation (3.24) can be used to compute Q-l

3

yielding
sin wct [cos wct - 1]
1o --y B w
c c
[cos wct - 1] sin wct
o - e— = e e — -
1 w w
c c
-1
Q () = (4.23)
0 0 cos w_t - sin w t
c c
0 0 sin w_t cos w_t
c c

Substituting into (3.47),

Wyv. BT W
3t 3% 2

-sin (.0 a

0
= ($? 33—- g§ [ do 5L 9) (—-73——-) + K, (0)[-%m(cos w,o - 1)L w
X -t c c
0.2 8 3 0 sin w o
+ (%) = w [ do (0)[ --(cos w o)] + K, (o)(- —- a-<9 w
n Vx Y _t c
0
+ (302 B [ do (o) (cos w 0) + K (o) (- sin w 0)p w
9v_ 9V xy c

0
+ (%) -2 [ do (0) ( m — 4 vy[ 5—-(cos w, - DI w
t

-sin w o

do (0)[——{005 w, o - 171 + K (0) (— — S w

2 3 5
+ (e 2 [ do (o) (sin w c) + K, (o) (cos w 0)p w
m T c
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0
+ (3)2 82 f do K_(o)[(cos w 0)] + K _(o)(-sin w o) w
m’, 3v_ ov yX c vy c
y x -t
2 9 3 ¢
+ (9 2= [ do K _(0)(sin w o) + K__(0)(cos w_0) w
m dv__ oV yx c vy c
y 'y -t
(4.24)
where

K (o) = K[E_ ,E ]
Xy X’ yo
ny(o) = K[Ey,EXO]
K (o) = XK[E ,E ]

XX X X0
K (o) = K[EE ] (4.25)
vy y yo

and we have assumed <E >=<E > =0. (4.26)

(4.24) will be considerably simplified if we assume

]
o

K (o) 8 K (o) (4.27)
Xy yx

Kxx(o) = K (o) K(o) (4.28)

yy

This is equivalent to saying that the electric field along any
particular direction has the same statistical property (up to 2nd order).

Indeed, (4.25), (4.26) and (4.27) imply that < Ee > =0, < E_E > =

K (o), where E

<% 5 is the electric field seen in any particular 6-direction.

If we restrict to homogeneous and isotropic distributions, i.e.

ow _ dw

ax Ay
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so that — = —— =

(4.24) simplifies to

3w 32 32 q.2| @
pral (——5 + —_f)ﬁf) [ K(o) cos w0 do| w (4.29)

av ov -t

X y .

2] o
or ow _ 3 3 g

3% 2 =7 Y 3o m —{ K(o) cos w O do] w (4.30)
where u = %—mv2 (4.31)

Equation (4.29) can be rewritten as

2 2
W _ L3y pt)w (4.32)
5t 2T 2
v 3
x 'y

where

0
p(t) = (12 [ K(o) cos w o do
m “t C

We note that

5 0
(%J [ X(o) cos w o do

—00

D(tox)

1,q9.2
5(60 2m S(wc) (4.33)
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l (o]
S(w) = 5 [ X(0) cos wo do

(u.34)

Aside from the fact that we allow spatial dependence of the electric

field in Example 1, the magnetic field is seen to cause a shift in the

frequency at which the spectral density is to be evaluated. It is clear

that the solution subject to an initial Maxwellian distribution is

Maxwellian. In fact if

then the solution of Equation (4.32)is

2
-V
K -
“ n___72_£_ o 2= (T +AT)
2m T + AT)
m
where
2m t
AT = = [ D(o)do
“ 0

Here « is the Boltzmann constant, T the temperature.

dAT _ 2m
E_t:—‘ - D(t)
lim daT _ ¢°
t > = dt - mK 2m S(wc)

(4.35)

(4.36)

(4.37)

The heating rate is

(4.38)

(4.39)

We have omitted any motion in the z-direction (i.e. along the magnetic

field). If the correlation between the longitudinal and transverse
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motions is ignored, the Ex, Ey may be evaluated along the rectilinear
trajectory in the z-direction. The results agree with Sturr‘ock's.l
Unlike Equation (4.6), however, Sturrock's diffusion equation is different
from (4.32) since he uses the guiding center approach. One of the
disadvantages in using the guiding center approach is that the radius
of gyration approaches to infinity as the magnetic field decreases
towards zero. Hence it is difficult to recover the zero magnetic

field limit from the theory. The present approach does not have such
difficulties.

If the magnetic field assumes different values over different
periods, which are much longer than the correlation time of the electric
field, we may expect that the result can be readily obtained by
combining the ahove results over the intervals. Puri7 has considered
the case with a time varying magnetic field. Except for some minor
modifications, the approach is similar and straight-forward, so that
we will just briefly indicate how this can be done. Instead of a

constant B, we let

wc(t) = wc[l + A cos (pt + ¥)] (4.40)

where W, A, p, ¥ are constants. We have

< .
[

w (t) v + i
c y m°x

< .
"

w (t)yv +3¢g (4.41)
c X m'y
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Instead of the submatrix

cos w_t -sin w t
c c

sin w_t cos w t
c c

in (4.23), we have

V.0 cos e(to,t) -sin e(to,t) v,
= (4.,u42)
vyo sin e(to,t) cos e(to,t) vy
Vx
- W i = L.
jk(to,t) . , J.k = 1,2 (4.43)
y
where
e(to,t) o wc(t—to) + B sin(ptO+W) - B sin(pt+¥) (4.4u4)
ch
B = —~=
p

Note that we do not have an autonomous system, and the more general
relations (3.7) and (3.11) should be used. The only modification,
however, is in (3.45) where X;i(o) should be replaced by sz(t,t+o) so

that we need only replace cos w 0 in (4.29) by cos 8(t,t+c), resulting in

dw 32 82 2 9
Lo (s (DT [ K(o) cos 8(t.t+o)do (4.145)
at 2 2°'m
v v -t
X y
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The result is formally the same with

0
D(t) = [ K(o) cos 6(t,t+o)do (4.u6)
-t

If we merely extend the lower limit -t to -~ in (4.46) D(t) becomes a
periodic function with a period 2m/p. Usually the measuring device can
not respond to such fast changes. Therefore, it seems reasonable to
take the time average of D(t) for the heating rate. We first expand

cos 6(t,t+0), using

"

cos a sin z Jo(a) + 2 § J2n(a) cos 2nz

n=1

sin o sin z (o) sin(2n+l)z

(o]
2 E J2n+l

n=1

where Jn is the Bessel function of the first kind of order n. We find

that
cos 6(t,t+0) = cos[wco + 8 sin(pt + ¥) - B sin(pt + po + ¥)]
= cos w 0O Cl(pt) Cl(pt + po) + C2(pt) C2(pt + po)
- sin w o C2(pt) Cl(pt + po) - Cl(pt) C2(pt + po) (4.47)
where

oo

cl(pt) s JO(B) + 2 nEl J2n(8) cos 2n(pt + ¥) (4.u8)
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C2(pt) =2 § J2n+l(8) sin(2n+1)(pt + ¥) (4.u49)
n=0
The time average of (4.46) can now be performed by using (4.47). It
gives
0 oo
<p(t) >, = (D2 [ ko) T  I2 (8) cos(w +np)o do  (4.50)
toom g nee Inl c

Here < >, means time average. Note that averaging on time is formally

the same as averaging on VY.
Equation (4.50) is same as Puri's result. Several points are worth

notice. Puri uses a randomization period technique. It is not clear
whether he has taken into account the non-autonomous nature of the
system. Because of the non-autonomous nature, we find it necessary to
use the time average technique, which is absent in Puri's treatment.
Also he has assumed EX = 0. In the limit B » 0, we see that the
particle will be accelerated anisotropically.

Finally, in order to measure the heating rate experimentally, one
starts out with an ensemble of non-interacting particles with an initial
distribution. It is pointed out by Puri that if all the particles see
an identical electric field, the distribution will not be Maxwellian.

He then argues that if ¥ represents the phase angle of the magnetic

field along its axis, the particle velocity will consist of a sum of

"quasi-independent” modes
theorem. It is difficult
only a single realization

it is even more difficult

following example.

which enables the use of central limit
to see how this is done. More basically, if
of the random electric field is carried out,

to see the significance. This motivates the




43

4,3 Example 3. Plasma Heating by a Plane Wave

So far we have not considered the origin of the randomness of the
electric field. We now consider a physical situation that may arise.

Consider a plane wave propagating in the direction of the magnetic
field. For simplicity, assume the wave is circularly polarized. The

equations of motion are taken as

zZ =V
Z
v =0
A
X =V
X
vV T wv + 1
X cy m X
.
Y=y
v =-wv +3g (4.51)
y cx m'y

The circularly polarized electric field is given by

™
|

= B031n(w0t - kz)

™M
It

E cos(w.t - kz) (4.52)
y 0 0

where W, is the frequency and k the wave number of the wave. We have

ignored the force associated with the magnetic field of the wave.

Substituting z = z, + v_. into the equations for the transverse

0 z0

velocities,

. q ) _ _
v o= wcvy + 2 E031n((w0 kvzo)t kzo)




Ly

vV o= -wv +%E cos((w. - kv )t - kz.) (4.53)
m 0 Z 0

0 0

Suppose we have an ensemble of non-interacting particles uniformly
distributed in space. The initial distribution of longitudinal velocity
is to be independent of that of transverse velocity. Consider the space
generated by kzO = 0, to kzO = 2m, for example. (This will roughly be

a slab if v_.t is small.) Let w(vvay) be the probability density of a

z0

particle with (Vx’vy) in this space. The electric field can be regarded

as random with random phase kz0 and random frequency Wy - kvzo. For

any preassigned correlation function K(o), there is a distribution of
w, - kv or a distribution S{v__) of v s6 that the electric field
0 z0 z0 z0

EX is a stationary process with this correlation function.8 In fact
<E >=<E »>=0 (u.54)

<E(t) E(t +0)>=<E(t) E(t +0) >
X X y y

(o)

f cos[(wo~kvzo)O]S(vzo) dv

—00

1.2
=7 E

z0

= K(o) (4.55)

Here S is seen to be proportiocnal to the spectral density of Ex(t).

The cross correlations are not zero but antisymmetric,

< Ex(t) Ey(t + g) >
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= < Ey(t) Ex(t + g) >

o

2

_ 1 . .
= 5 E, _i 81n(w0 - kvzo)o S(vzo) v, (4.56)
Applying (4.24), we have the following diffusion equation.
2 2 0 -
W g2 |9 d 1 .2
LS g _+ 2 __ = -
o (m) 53 T 53 f do 3 E, f cos(wC t o, kvzo)o
v v - -0
x b/
S(vzo) dv,, w (4.57)
As t > «, we have
2 2 w, o+ w
ow _ .gy2 |3 3 1.2 c 0!
= @5t 5] " 5E s(—k——~)w (4.58)
v av
X y
ant the heating rate is
2 w ot w
mK 0 k (4.59)

Note that the maximum occurs when fg T 9 equals the most probable

k
velocity along the direction of propagation.

4.4 Summary

In this Chapter, we have applied our previous results to several
situations, in which a charged particle experiences a random electric
field. By considering a noninteracting ensemble of charged particles,

it is found that heating is possible with a random electric field,
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and the heating rate is in general proportional to the spectral density
of the random field. In general. the presence of a magnetic field has
the effect of a shift in the frequency at which the spectral density

is to be evaluated. This is particularly clear in the last example,

in which the origin of the randomness of the field is also considered.
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V. GENERALIZED STOCHASTIC EQUATIONS APPLIED
TO THE COULOMB POTENTIAL PROBLEM

In the introduction we have already pointed out that the application
of the conventional Fokker-Planck equation to the Coulomb potential
problem involves some difficulties. For one reason the coefficients can-
not be determined explicitly without the use of some model or other theory.
From a theoretical point of view, this may lead to inconsistency. On
the other hand, the kinetic equation of a plasma based on the BBGKY theory
can be manipulated into the form of a Fokker-Planck equation.g’l0 Aside
from the fact that we wish to derive the kinetic equation using the
Fokker-Planck equation approach, this does not give a general exact form
of the coefficients in terms of the random force.

Early attempts in finding the coefficients introduces the collision

10,12 Gasiorowizc et al.,2

concept by means of the Boltzmann equation.
use the Vlasov equatiqn and a Holtzmark distribution. Following
Bogoliubov's method, Tolmachev13 introduces a chain of linked distributions
at different times for the Coulomb potential problem. The results are
divergent at extreme distances of interaction. Temkolu makes use of a
ternary correlation to insure convergence at large distances. His results
have been further refined by Tchen.9 These methods are primarily based
on the Liouville equation or the BBGKY theory, and are especially
formulated for the Coulomb potential problem. As a result, these methods
may not be suitable for systems with more general forces.

In this chapter gneralized stochastic equations are used for the

lowest and higher distributions. With a cluster expansion, the equations

are decoupled and the coefficients are determined.




L8

A diagram relating various approaches is as follows:

| : [ :
jLionville [ Generalized Markov Model®
Equation : Stochastic or Lagrange
l Equations Expansion

BBGKY
Hierarchy

Higher Lowest Conventional

Distribution Distribution Fokker-Planck

Equation

BBGKY Theory
Boltzmann Equation
Dressed particle
theory, etc.

‘ Kinetic Equation

The dotted line indicates some relation between the generalized stochastic
equations and Lionville equation. This point is discussed in the final

chapter.

5.1 Formulation of the Coulomb Potential Problem

We consider a system of N identical electrons in a volume V, with
a uniform background of immobile positive charge. Let ij be the spatial
coordinate of the jth electron, vj the velocity and'fj the electric

field seen by the electron. The equations of motion are then

S -
X. = V.,
] J
j =1, ..., N (5.1)
Y 1 -
vV, = =(- eE,)
] m J




u9

where -e and m are the charge and mass of the electron. Introducing the

potential
N 2
k#7 xj—xk
we have
5 3¢,
6E, = =2
3 oX

Equations(4.1) become

|.

).
n

1<l

i
-]
1l
~~
|

Here we take r_  an effective range of the force, v

0

velocity, with

(5.2)

(5.3)

(5.4)

(5.5)

0 as the thermal
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e?
o % 7, (5.6)
b, = I;—s—g—l
e R
I35 | (5.7)
o
The characteristic time is T and should be such that the higher
0

distributions relax in a time of a few characteristic times, enabling us

to drop the initial conditions and extend the limit of integration t to

ote
«w

© ag in the later development. We assign
¢
0
— =€ (5.8)
0

to be a small number. This means the interaction is weak compared to

the thermal energy.

Let
-~ - >
£ = (x,v) (5.9)
— -—
be a six dimensional vector. Let D t.y «.. 3 E.,t.) be
Hys eee ;u.(gl’ 1’ ’ 53’ J)
s 408 . - - j-é = .
the probability density of (X (t.), ¥ (t.)) =¢&,, ... , (x_ (t.),v (t.))
Myl My 1 1 uj ] uj ]
Nk
H'Ej,j @ 1,2, ... . Hereumaps the set {1, ... , 3} into {1, ... , N}.
We consider only symmetrical distributions, i.e., if M maps {1, ... , N}
onto {1, ... , N} in a 1-1 manner, then
~ - >
D S oee. 5 EL,TL) = toy e 3 gLt
M(ul), NN M(uj)(slil’ : Ej’t]) Dul, cee u.(gl’ 1’ .%j, j)
\ (5.10)

"
For a plasma, r, is usually taken as the Debye length and the 15
characteristic gime is taken as the reciprocal of the plasma frequency.

b .
To keep our notations simple and comparable to those in the literature,
we will not use capital letters as in Chapter I.
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Since the system (5.1) is invariant under the transformation M, this

. . . s = -

is equivalent to requiring Dl N(gl,o; e 3 EN,O) to be symmetrical.
s ane

In view of the symmetry, we will suppress the subscripts Hys ooe uj

whenever they are distinct. Thus

DT, ,t.; t.) = D (E. Z.,t.)
1oty wee 3 Byt 1, oor , 30B00F13 oo 3 Baty

D (‘ . . P )
ML), .., M(5)PELOFLS ce 3 Bty

Let

ul’ s e 9uj/Uia e 3U£

= ]

N N
ul, R ’U-sUia ‘e ’uk(gl’tl; SR S i’ti; s ;Ek’ti)
t

D ,(Ei,t'; “es

Uia L ,Uk

be the conditional probability density of

-
\%

u
LAt

- Y - >
(Xul(tl)’vul(tl)) Eyo ven ’(xuj(tj)’ uj(tj)) 3

given

n
™l

ol 1y T ot 4t
(Xu'(tl)’vu (tl))

CRICIRISAICID)
> k U k
1 1

k k

H
Ty
=

where

1,2, ... and k = 1,2,

(S5
t
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Agsin, when the subscripts Hy oo s uj,ui, cen ,ui are distinct, we will
. -— L =t -
just write as D(E ,t 3 ... ;Ej,tj/il,t'; . ;EL,tk)-
Since we have a large volume V, it is convenient (particularly in
3D(E,t)
the case of spatial homogeneity, i.e., ———%i—— = 0) to write
9x
> 1
D(E,t) = & flci,t) (5.13)
More generally, we let
a - 1.3 - - .
D(E ,t5 ove 5Et) = ()’ £5(Fps -or Byat), 3 <N (5.14)

Similarly let
— - ] 1
D(El,tl; ce ;Ej,t./gi,ti; . fgk,ti)

1

= (—)j (T, ,t.; sE..t./E. Lt fE' t'), 9 + k < N (5.15)
V gj/k l, ls A ,'aj ’k,k,] - .

We now introduce the cluster expansion.16 We shall write down only

the first few relations explicitly. Define P, T, Q as follows:
- Y - ~— - -
D(gl’tl’EQ’tz) = D(El’tl)D(EQ’tz) + P(El,tl,iz,tQ) (5.16)

3
- - P
D(E .t + I' D(E;,t)P(E,, 15Tt

a N N
D(E 1 38, ,t,38,,t,) =
1°7°1°°2°72°°3°"°3 1 i®7i 5 <k

n 3 w

i

= - -
+ TCE 1y 38,5t ,58,,t,) (5.17)




- - ..; t ..; t )
D(El,tl’€23t23€3, 3:£u, ]4

I
' -3 - - ._>
+ I D(gi’ti)D(gj’tj)P(gk,tk;EQtz)
i<j k< g

u
20 D(E, . T(. ota ey oty 3By ot )
i<k<£ l’ i j’ j’ k, ks z’ 9/

<+

In
' - ._s - .—\
p P(Ei,ti,gj,tj)P(Ek,tk,EQ,tz)
i<j, k<

-+

(A - — -
+ Q gl’tl’EQ 3t2 3&3 9t3 ’Eu”tu’)

(5.18)

where I' means the summation indices i, j, k, & are to be all distinct.
In the later development, we require P to be of first order, T and
Q of higher order than P. To zeroth order, since the trajectories of

the particles are independent, this implies that

y
D(Ez,tlggé,tzgig,ts;il,tu) = 7 D(Eg’ti) (5.19)
i=1
and
EOG - ¥ _4 -
£,(81585,8558,,1) = i:lfl( Ry (5.20)
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Similarly, we have

g (Bt v 5Bt Bt e ) = v i D(E,,t.)
j/k l’ 13 b j’ j l’ 2 b k’ k i=l i’ i
J >
= £(E,t)  dtko < (5.21)
i=1

to the zeroth order. We will not employ special notations for

> -
. . 1 Iy .
Dul, ,uj(gl’tl’ sre 3byoty) when the uy's are not all distinct.

It should be noted in such cases, D L. may contain §-functions.
l’ H] j
In fact, to zeroth order,

L P S [
D1,2,3,4,1,2,3,u(€1’ ’52’t2’53’t3’54 u’gl ’gz’tz’ga’tafu t)

n
- - .s‘_.s ™ 1_ _;'_g.
i:lD(Ei,ti)G(xi X, Vi(ti ti))é(vi vi)
1 by N N -
- (= [Br iy ' (B
(V) izl fl(ai,ti)é(xi X, vi(ti ti))cS(vi Vi) (5.22)
where
- _ -t
FENCIN
-
S IR Y
& (% ’Vi)

We are now ready to write down some stochastic equations. Let us

define the following quantities.

eE, = eE, (X.,t.) (5.23)
ja ja 73073
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N a¢(§j,xk(tj))

= I j =12, .o. , N (5.24)
K#4 s

S e2

¢x) = -
| %] (5.25)
E.. 8 E, (X.+7,0,t.+0 5.26
380 IER ALY ) ( )
aj(t) = (ij(t),?j(t)) i o= 1,2, , N (5.27)

- > .

Ej = (xjﬁj) j®l1,2, ... , N (5.28)
ﬁ'j = (ij—‘Gjtj,'x?j) § 21,2, oo , N (5.29)

where the subscripts o, 8B refer to the ath and fth component of a three
dimensional vector.

Taking § ® 1 in system (5.1), we can write down the stochastic
equation for D(Ei’tl) or fl(E&’tl)' This is formally the same as in
example 1 (note that however the potentials are defined somewhat
differently). To allow for a three dimensional space, refer to Equation

(2.31a). The result is:

-l .
3£ (E),t,) L e b p oy et as
ot * Via 3% " m dv la’ "1 1771
1 la 1
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e2 9 J aEla <
- = do(-0) < E., /E(0) =7, > f
m2 Bvla ) lee 1B8c’" "1 1 1
0
2 3 3 > >
T v, Sv.. I doKLE) sE1gs/8,(0) = n £y
m lo 18 -
e2 3 9 ° -
-
- =55 ~ JodoK[Ela,ElBG/El(O) = nl] fl
m la "71B 7
0
62 ] o K [ -
t s [ax <Ela/£l(0) = nl>] J do(-0) <E180/€l(0) =mn, > £
m lC! 18 —o0
0
2
+e_.___a_[_a__<]-: /g(O):.ﬁ > ] do <E /-E‘(O)='n>>f
2 3v ov la” 71 1 1Ro" "1 1 1
m 1o 18 ‘o
(5.30)

where o, B are to be summed from 1 through 3, and we have replaced the
lower limit -t, of integration by -=, since we are interested in time
long compared to the correlation time.
0 . - Fed . .
According to the results in Chapter I, D(El,tl/EQ,tQ) satisfies a

- -
similar Equation as D(§ ) so that gl/l(gl,tl/f',tz) satisfies (5.30)

1,5
provided the extra condition
(5.31)

EQ(tQ) =&,
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is imposed on all averages, so that,

387 /1(815117/8,51)) . %81 )1
Btl la Bxla
_E_S_<E /E(O):ﬁ‘ g(t):€>g
m avla la’ 1 1°°2° 72 2 1/1

2, 3E, R N R
VY J do(-0) <a<ls’ E1po/81(0) = nps8p(ty) = 8> gy )

0
e 9 P J - PECRR 3 -

+ ——— —— | do K[E, ,E._ /E (0) = mn ,E.(t,) = €. 1g

2 3V, ale la’"1Rc’ °1 1°°2° 72 2°%81/1

-0

PO 9 od( KIE. ,E.. /E (0) =%, B.(t.) = £.]
2 3v. . 3% ot-c 16°F1p6751 =TpaE 0ty = 8o le
m lo 1B

-0

0
2
e ] 2 - s = _ > ->
Yo e SE/E (0 =g (ty) = 8] J do(-0) <E)p4/8,(0)
m la 1R -~
_.;Q _-\
npe8olty) = 8,>8)
0
2
+ & 2 % <k JE(0) =R .E(t) =E,5] | do<E., /E (0)
2 3v v 10’ "1 = Npssothy 2 180’1
m l lB -0
=e8,(ty) = gy gy (5.32)

Thus, if we know the various conditional averages, we can find fl and

The fact is that these conditional averages of E. are functions

g1/1° 1

of £ and perhaps higher density functions and must be determined

1° 8171
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consistently. This is clear from Equation (5.3) which defines El. Indeed,
if we make use of the definition of the various density functions, we

find that

1
Sk
v
"
A

n ™M=

Iy
e < Ela/il(o) =

1l

ax

N 8¢(x x ) g
J . 1/1
j=2 lao

(g st /8 O)d‘a’j

(N-1) J a¢C§l:§2)

v 3% g1/1

(% ,t O)dE
1o 2

(5.33)

where we have made use of the assumption that the particles are

indistinguishable. Similarly,

2 -
e = la ch/E (0) = 1
N3¢k -R) (R HV 0% g ' N
k#3 lo 18 v ] 3
k,j>1
N 3¢(X,-R,) 3¢(R +. 0-R!)
l ] l l k - .,.‘ - -,

k=9#1 lo 18

(N-1)(N-2) 3¢(§l—22) IP(R +vlo x3)
", % % g2/1

o ) -y - -~ -y
(o
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36(X,-%,) 3¢(R +¥.0-%!)
172 1 1 2 - -t - St
+ (N-1) J axla axlg D2,2/l(£2’tl,£2,t,+o/nl,0)d£2d€2

(5.34)

Using (5.21), (5.22), (5.33) and (5.34), we can estimate the orders
of magnitude of the various terms in Equation(5.30. The ratios of these

terms are found to be

1st
term  2nd 3rd 4th 5th through 8th

2 2.2

1 :1 : norg(¢0/mv02) : norg(¢0/mv02) (norg)2(¢0/mvo )

(5.35)
Here we have taken N, V to be large, with a finite ratio
N
V™o (5.36)
We will consider two cases. In the first case, norg ~ 1, so that
(5.35) is of the form
1 @ 1 : € : 82 : 52 (5.37)

Keeping terms up to €2, we will show that (5.30) results in the Fokker-

Planck equation. In the second case, we consider the limit norg - %3

which leads us to the kinetic equation. In both cases, we assume
spatial homogeneity, i.e.,
3f (T, ,t,)
1480

=0
Bxl
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5,2 The Fokker-Planck Equationl7

In this case we consider

3
nyry v 1 (5.38)

and keep terms of (5.30) to second order. According to (5.33), (5.34)

and (5.37), we need g/1 to first order in (5.33), 8,y 28 well as

D2 2/1 to zeroth order in (5.34). The last two can be obtained from
9

(5.21) and (5.22). Thus our primary concern is to find g1/1 to first

order. Note that the ordering in (5.37) applies to (5.32) as well. Thus

to first order, gl/l satisfies
3g) 1 (B ot /Bysty) L. &
atl la avla
_ e 9 - L _ -
Tmav E /81000 = M LE(t)) =&, > gy )y (5.39)

By symmetry of the density functions as well as that of system (5.1)

(under the transformation M),

g
/ l/l _ - _ -
——(62,1: /g t) + v = < E, /8,(0) = nQ,El(t ) = E > 811

&
Quavzd m

ana

(5.40)

The result is expected since it is simply Equation(5.32) or Equation

- s
6.39) for the second electron. By first setting tl = 0, then El = K
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- -
28 /1(8p5tp/M150) N 9 L2 o R0y s R0
3t You 3v, £1/1 T mwav 20 %2 = Moy
20
-7 811 (5.41)

= - = - . . .
Now <E2a/E2(0) = nz,gl(o) = nl> is found in a way similar to (5.33).

-— _,_;-3 _
e <52a/£2(0) = n2,€l(0) =Ny

-

3¢(x x ) g
l/2 - ._x -
v (E »t /nl,om2,0)d€j

- _-ﬁ
+ [ Efifz_i£1 (g ,t /n O)dg'
J 3%, 1/1 2 2’ 1
36(X.-R.)
_ 2 3 = Qo= =
= T J T 81/2(855T,/N15050,,0)dE,

20

— = 1 ( 0)dzt!

20 (5.42)

> 3,
j 3¢(x2 Xl)
Since, according to (5.37), these are of first order, we need only

gl/2, Dl/l,2 to zeroth order. From (5.21) and (5.22),

21 /o Egsty/T15030,,0) = £/(F 1)) (5.43)
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Y - - = B S - , RN
Dl/l,Q(El’tQ/??’O’nQ’O) 5(xl [C?l vlt)+vlt2]) 6C$i-vl) (5.44)
Similarly, in the last term of (5.41), we need only 81,1 to zeroth

order, which is fl from (5.21). Putting in (5.41)

-2 oY
agl/l(EQ,t2/”l,0) 8gl/l
9t V2o Bx
2 2a
n 39(R.-X.)
_ o) 3 “2.73 S >
T A, J T f1(Va0tp)degF (V1))
a 20,
3o(X,-%!)
1l 9 2 71T N - -
T J g SR -0k -V v 1, D8 -V )dE £, ()
20 2a
Q@ A A
S PRI e (5.45)
T mav 3% 1'V20%2 :
2a 20,
—
Bfl(i,t)
where we have used —————— = 0, so that
9x
>
£(E,t) = fl('\?,t) (5.46)

To solve Equation (5.45), we "freeze" fl.ls This assumes that

g1/1 approaches its t, >~ form in a time short compared with that over

2

\

which fl is varying. The solution ish

*
Formally, (5.45) can be solved by taking the Fourier transform on X
followed by the standard method of vapjation of parameters. It can also
be solved by using Laplace transform.
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o s e? —1k (v t +xl vltl)

i
Bfl(vz)
N, ,0) = —55 ¢ 1k' —_—

3.5
V2
b -

(k ,V2 ,O/Y\lao)

where

-
X

';v

- Y
gl/l(EQ,t2/nl,O)dx2

For simplicity, let us omit the term due to initial value.
to assuming initially there is no correlation.

be evaluated in a straightforward manner, by using (5.47) with t

e <E_/T,(0) =T>
-
= n [ 3¢(X1‘X2) g. . (&t /n O)dg
0 | ax 1/1°7°2° i 2
la
. 0 S SN
= n e2 lkq elk.(xl-XQ)g (E »t /n 0>&idg
0 2 1/1 2
21k
2 ika J.:r('.szl 3 t - - -
= noe Idk ;T2—k-2- e (2m) J gl/l( ,V2,tl/nl,0)dv2

(5.47)

(5.48)

(5.49)

This amounts

Equation (5.33) can then

= t_-0o,

1
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R S t. = . S - - -
) lka ikex) 3[ 1 e2 -i¥ (V2—vl)tl—£i 3
= nge dk 55 © (2m) —5— ¢
21k 4o 271k m
— - -—
afl(v2) ik (v2—vl)r R
ik e dtdv
oY, z
2
* Kk 3 3f (7
“Ho® S ©y (2m) £,.() 22 2R
= dk . 1| ——§ (kev.-k-v, )A¥
m 4 2.2 - 2 1 2
k (21%) 8v2
n
. 2n0e di Eﬁ o k vl
- m 4 k (5.50)
k
where
- L) - -
F(kwl: (D) 6 ?vl-ﬁ"? &
K 1'V2 K K \D) (5.51)

and F' is the derivative of F with respective to its argument.
We have omitted the initial condition. For the case of non-zero

initial correlations, there are conditions on the initial correlations.

. . . . 18,17
These conditions have been studied by Sandri and Frieman. 8,1

. 2 > _ - .
To find e <ElaElBO/£l(0) =Ny >, according to (5.34) and (5.37),

we need g/1 and D to zeroth order, which can be found from (5.21)

2,2/1

and (5.22). Because of spatial homogeneity, there is no contribution

due to g)/1° so that

2 b -
e <E) E1ps/81(0) = 1y>




1

2

6

(N-lf)¢(;<‘l—s<‘2) a¢(§l+§? G-31)
J

axla Bxle

a¢(‘>21—?<‘2) 3 ¢(3€l+$lo-3<‘

1
2

)

% |
0 Bxla BxlB

D2,2/1

5

3 = - -y

a 3 o ey
fl(v2) 8§ (X X, _‘720) $ (v2 v2)d€2d€2

3¢(xl-§é) 3¢(xl—x2+(vl-v2)c)
%o ax 3% £, (
lo 18

2

vy)dE,

. Rl S N P - 3
i 5 ik ike (%)) 8¢(§1—x2+(vl-v2)o) o s
= Do 272 ¢ 3% £, (vy)dkdg,
2717k 18
. . e - 3
i 4 lkd(_lkB) -ik (vl—v2)o 1 (2m) .
= nge ———5— ¢ 75 fl(v2)dv2dk
217k 217k
L = a -
2n0e kukB —1k-(vl—v2)o .
= e £ (T.)dv.dk (5.52)
m ku 172 2
Hence
0
(2 - _ =
] & <E1aF1pe/81(0) = ny> do
2noe‘4 0 kakB —ff'(?lJv;)c N
= JJJ 2E £ (.)dodv. dk
ﬂ 4 1' 2 2
_ook
k k
_ Uy a B _-a_-he - e
= 2nge J! X § (k v K v2)fl(v2)dv2dk
K k P
v
=omet | 2EF L)ak (5.53)
0 ku k
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Here again we have frozen fl and taken the limit tl+w°

We are ready to write down Equation (5.30) with all the functionals
involved explicitly. The follewing points are observed:

7. ><E

1. T involving <E. /E.(0) =
. erms involving 1a El =My 18

= _ = .
5/8,(0) = M> vanish to the
order concerned (here second order). For, according to (5.33) and

(5.37), we need gl/l to zeroth order for each average. Because of

spatial homogeneity, there is no contribution. It follows that

<E /E(0) = 7> (5.54)

K[E. ,E.. /E (0) E
lo> 1Bo &1 - 17 T "T1a T1Ro’ "2 1

1
3
]

2. To the order concerned,

(5.55)

KLE) ) sB1go/81(0) = Myl = <Ey Eypp2

Since we need g,/1 and D in (5.34) to zeroth order, which are given

2,2/1
by (5.21) and (5.22).

3 -
N FlaF1ge” = ° (.38)

This is observed in (5.52).

)
e— <E_ E >
ale lo 1R0
= 2 <E. (X, ,t )E. (R, +V.,0,t_ +0)>
ale lo 712717718771 "1 )
- wnln +
RO aElB(xl+vl o,tl o)>
>
la" 71271 ale
el ey +
o (ot 3ElB(Xl+le,tl 0)>
la 71271 ax

18
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oE
_ 9 S & . -A la
=0 g < Ela(xl’tl)ElB(Xl+vl J,t+0) >- @ <53 Elsc>
1B 18
oFE
la
= - g < E > (5.57)
BxlB 180
because of (5.56). Thus (5.30) can be written as
of
l _e 3 - -
5T " moav < P1g/51(0) =y >f)
1 lo
e2 9 ] JO
- — | — do <E. E >| £
m2 3vla (ale ) lo 1R0 ) 1
e2 9 9 [O
+ — do<E_ E f
m2 8vla 8le Jw la 1Ro 1
-2 % g /() =T >f
" m ov lo’ °1 1771
la
e2 9 JO afl
+ —— do <E_. E > —
m2 8vla ) la 1Bo 3le (5.58)
of
where we have dropped terms involving sar-because of spatial homogeneity.
1
Putting (5.50) and (5.53) in (5.58)
df on e - X¥\ 2ne [ aa VY
1 3 Bo® -k 1 0 ik _[Kv
FETu- Tl Wl BL sl b S Sl S-Sl v
1 V1 m k m k 1| (5.59)

which is the Fokker-Planck eguation.
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5.3 The Kinetic Equationlg

¢
We now investigate the limit by letting norg -> E-so that norg(——%)
¢ my
= 0(1). (5.35) now gives
1 :1:1:¢:1 (5.60)

We will therefore keep terms up to first order. In the cluster
expansion, T, and Q are assumed to be of higher order than P, which

is of first order. As before, we assume spatial homogeneity. We must
find the various averages in (5.30).

-
According to (5.33), we need 81,1 to first order for < Ela/él(o) =

ﬁi >. According to (5.34) and (5.60), we need €571 to first order but

only the zeroth order of D since the term due to D2 2/1 is already
3

2,2/1
of first order.
Consider the term involving g1 in (5.34). We have

??(Xl-XQ) ?¢(xl+v
0 X

0-%..)
1 2 - .-.'
(EQ,tl*ga,

- — —.'
tl+0/nl,0)d€2d€3
(5.61)

g
lo 8XlB 2/1

Using (5.15), (5.16) and (5.17), we find that

1 - -
;5’gz/l(gz’tzﬁgs’t3/51°t1)

3 3
1 - — - -
= om——c4- 2 7w D(E,,t.) + I' D(E,.,t.) D(E.,t.:§ 1 {} (5.62)
D(El,tl) {: i1 i*hi 5 <k iti 327377k Tk

Putting (5.62) in (5.61),
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36(X. -%2) a¢('>%l+v“ o-%1)

2 1 72 1 2 - =, —- > =
o 3% 5% 8/1(825%385,870/M),0) dEydEg
la 18
36(X,-X,)  3¢(K,+V.0-K))
2 172 1 71 72 2 - > -
n, 5% 3% VID(E sty 383, t %0) dEydeg
la 18
e _—h — —— _—\'
=ng | # ) M) £, (4t +0dg, ) (B,,t, /8 . t+0)dE dE]
0 ox ax 1'°371 1/1°°2°7°17°3° 2773
la 18
(5.63)
Here we have made use of the fact that integrals of the type
84)(3’('1—'}?2) N -
——w fl(EQ,tl) d£2 =0 (5.64)
la
and may be omitted because of spatial homogeneity.
Equation (5.63)together with the fact that we need D2 2/1 to zeroth
b
order reveals that
< BlaElBo/gl(o) =n > =< ElaElBo > (5.65)

and this average is a functional of g1 Thus it will be sufficient to
determine g1/1 to first order. Also, because of spatial homogeneity,
terms involving products of the average of El (conditional or not), may

be omitted to the order concerned. Hence Equation(5.30)may be rewritten

as
Sf 2 0 SE
1 _ € 0 e _ - E‘ ) _ la
5T T m av < E1g/81(0) =y > fy v [ do(-0) < 5 Elge > 01
la m la -w 18
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e2 ] ] ? e2 3 9 0
+ S - do < E. E . > f + — —— [ do(-0) < E, E. >f
m2 Bvla BviB e la 180 1 m2 Bvlu aXlB e lo 1R 1
(5.66)
where
- > ad’(;fiz) - - -
e < E) /8, (0) =) > =mn, “'3&1;"”’g1/1( 22to/M,0) déy (5.67)
according to (5.33) and
— _.h - -l —..h'
e2 Ce . 3¢(xl x2) 3¢(xl+vlo x2) f oty sERT0)
la"1R8c 0 9x oX 1°°2°°1 2 72 2
: la 18
S '
6(v2 v2) dEQdE2
39 (R, -K.) 36(R. +V 0-X})
2 l 2 l l 2 -.' — “ — _a'
+ny | =5z 3% £ (83,1 %0) gy 1 (B, t)/E5,T +0) dEydEy
la 18
(5.68)

according to (5.34), (5.63) and (5.65). Here we have substituted

1'. 3 bl B > > _
v fl(EQ,tl) §(x!-X _VQG) 6(v2—v2) = D

e = -
2% (B,5t1585,t)%0/0;,0)

2,2/1

to zeroth order.
To find g /1 to first order, let us rewrite Equation (5.32), omitting

products of averages because of spatial homogeneity.

—t

ol
38y 18151 /8,st)) X %8y /1
ot vla ox
1 la
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Now

a¢(’§l-§j(tl))

Bxla

N
— O —

R /8,€0) =M, ,8,(t,) =&,

i=2

3¢(X1—Xj) gl/2

\Y

- - el —

gl/2(€ ,t /n

a¢(§l-‘§é)
-ﬂ'_ — _ —
T SE IR D 60

where we have substituted the zeroth order of D2/l 5
bl

of first order already.

Again we use the cluster expansion to find 81/

(5.17) and (5.64), we find

' =
pVp) d8

1

5 (5.70)

since the term is

Using (5.16),
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39(%, %) - >
o R 81 /9(Fgot1 /M 058,51, ATy
8¢(x —x )
— = gt et ot . 3
=0y %, -8),1 (B30t /M50) Iy
3¢ (X -X) - o -
I R e DV CRVAPR R

so that (5.70) becomes

o

- __A" _ 2
< Ela/il(o) z nl,E2(t2) =&,

36(R, X,)
173 @ S S
o I —m e Get/M® 4

1]
3

8¢(xl-x3)

* 0 o 8y (BT /Nysty) dEy
la
- Y -
8¢(xl—x2—v2sf}—t2))

axla

Next, we want to show

< la lBo/E (0) = l,E (t ) = E > = < E_ E

For

e la ch/E (0) = nl,i (t ) = E >

N 8¢(x —x (t, )) 8¢(x +v o-R (tl+o))

= < I — e T

T axla axlB
3,k>2

>
la 1Bo

(5.71)

(5.72)

(5.73)
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N a¢(§l-§5(tl)) a¢(x + 0 x (t;+0))

1 - - > -\
i< I /£,€0) =T, ,6,(t,) =&, >
Soko2 5% axl8 1 125252 2
N 30(%) X, (t,)) 3(X +Vv 0% (£)10)) 4 - N
vl ax /gl(o) = Tp.8,(ty) = &) >
k>2 la 1R
N 8¢(§li§j(tl)) 30 (X +vlo x (t,+0)) N a
+ < I ’& (0) =mn,,E,(t,)) =&, >
552 axla les 127272 2
36 (R, -R (¢ ))8¢(x 7.0~ x (t,+0))
b 2 L 2L E o) =W B ) <,
la 18
(5.74)

The last term is of second order. The third and fourth terms are
proportional to N and are of first order, so that in evaluation, we need
only density functions to zeroth order. To this order the average on
§k(tl+o) or on ﬁj(tl) (j,k » 2) has no contribution because of (5.64).
In the second term, the density function needed is of zeroth order and
in fact this term is the same as the first term of (5.64). TFor the

first term, we have

N a¢(§l:§j(tl)) a¢(x v 0%, (t 1%9))

1 (=Y A == Y
< 1 — /E-(0) =T, ,6.(t,) =&, >
3k Bxla axlB 1 1’72 "2 2
j,k>2
S A
3p(X,-X,) 8¢(x V. o- x )
- 2 1 3 1 A --& N .—L . (S N
- no f BX BX 82/2(53atlaiu,tl*‘O/nl,OgEQ,tQ) dggd L¥
la 18
- -\ -, -~k -3
Y a¢(xl—x3) B¢(xl+vlo—xu) . (g o) (g . /g o)
By % o 1540t %07) 8y 18630 5
lo 18
-
d€3d€; (5.75)
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by using the cluster expansion and the spatial homogeneous property

(i.e. (5.64)). Essentially the reasoning is as follows:

1, _71,2,3,u
V2 2/2 Dl,2
Because of (5.64), we may restrict D to its first order component,
. 1,2,3,4
which is pX D.D.D , and D to its zeroth order component which
. ) 1,2
i<j k<2
is DlD2 Again because of (5.64), the only surviving term is when
k =3, 2= 4.

Thus (5.73) is valid. Since (5.72) and (5.74) are all of first
order, we need g81/1 to zeroth order on the right hand side of (5.69),

which is fl' Substituting into (5.69),

- -
38, /1 (81511 /8st)) %8, /1
v
Btl la axla
n 3¢(x —x )
_ 70 3
= “7?‘“'_*’%/1(53’t /52’t ) dgafl(E ,ty)
la la
n (R, X,)
0 23 173
la la

S R
3¢(xl»x2-v2(tl—t2))

s 12 £ (E ,t.)
9
m avla axla 1'°1°°1
2 0 SE
e 9 la
- S | dot-o) < o E1ge > £1(6p51))
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e2 9 ] ? =
P AR - do < E, E > £ (g,,t,)
mQ Bvla BvlB e la"1R0 1 1’71
e2 d a3 ? =
+o— — do(-0) < E, E > £.(8.,t.)
m2 avla BxlB e la 1Ro 1°°1°7°1
Finally, using (5.66)
5 (.\ S ) 3
8171 8151178758 , B
Btl lo Bxla
-
n 3¢(? -X,)
_ 0 3 1773 A > >
T n oav. % 81/1(85511/8,5t,y) AE,E (E),1))
lo lo
A . -
L1 8¢(xl—x2—v2(tl—t2)) . (E oy, afl(al,tl)
m v X 1'°1°°1 ot
lo loa

(5.76)

(5.77)

Since we are interested in the functionals of such as < E /5 (0) =
g1/1 la’ ®1

m > and < ElaElBo

contribution because of spatial homogeneity.

81017 %

> , we may omit the term

+ 8g and consider only &g).

of
at

before, in finding these functiocnals, so that

A -
987 /1 8yt 8551) 98y /1
- 5t T Ve B
1 la
n 8¢C¥ X))
0 23 173 > r > o
e - 3= _.gl/l(gs,tl/az,tQ) d£3fl(vl)
la la
e . )
1 a¢(xl—x2-v2(tl—t2)) -
+ = f(V)
m Jdv ax 11
la la

—~E-in (5.77) which has no
(This amounts to writing

Furthermore, we 'freeze' f.  as

1

(5.78)
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By symmetry,

( 2t
agl/l g2’t2/€l’tl Bgl/l
ot T Voo x
2 20
n 36 (X, -%,)
_ 0 0 2 73 - - -
20, 20
30(X, R, % (ty=ty))
s 2 l - £,(7,) (5.79)
m oV 3% 1VY2
20 20.
so that
> -
3gl/l(€2,t2/nl,0) agl/l
at * Voo Bx
2 20
n 3 (X.-X.)
20, 20
3 (X, X, -V (ty-t)))
e 2 £,(3,) (5.80)
m oV X 1'72
20 2a

Equation (5.80) may be solved by using Laplace and Fourier transforms.QO

Let
t T 3R
@ -p -ik,x%
™o - 2 1.3 2 72 = KN
g1 /1(Kp>¥0P) = g © éty (7 ] 81,1505t/
-
dk, (5.81)
and define the operator
A L
av
v(2) = ——-~T (e (2nng Py (p) Hph(xg) 2
:5 m 802 e(ﬁ&,pz) Py + 1?2-v2

0)
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2

where ¢(k2) = ; 5 (5.83)
2n 'k
2

is the transform of ¢(x), and
. 3 e Y
e(f -1 (2m) n0¢(k2) = j afl(vz) dv2 5. am)
’ - - M == O = .
2°52 m 2 v, p,t 1Fé v,

h k ) 2 (5.85
T en gl/l 23V2:P2 - V( ) Sl . )
where

8, (v,) ik ¢(k,) 1K, (R t)
1 95 (vp) kel T TNy
S, = = =% e e (5.86)
mooYy Py 2"V
I R Y
- 1 3 a¢(x2—xl—vl(t2—tl)) N
is the transform of = ==« £.(¥v,)
n13v2 X 1"°2
Here we have ignored the initial condition. We find that
=N N
J g1/1(K55V500y) ¥,
2 S A A
N [ @, %6 (k) i (% ¥t )
E(Ré,pg) P, * 1Fé v, m oV, P, t 1Eé vy
(5.87)
Taking t, = t, > =, we may evaluate the residue to obtain
oS S _ .
[ gy (psVysty =ty > ) d-‘k;2
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R e S
—1k2-xl
S
I (- e(k,,-ik ) (5.88)

T e(Kye-1K, V) (503,
From (5.67)

e < Ela/€1<o> =7 >

1
e
(X, -X,)
_ 17%2 - N
= HO ——5;——“‘ gl/l(iz,tlﬁ? 90)d€2
lo
kX
=, ey 3 2 2
=n, [ dk ik (k) e (2m)° gy, (K,¥,:t)) 49,

-

. 1 —_—
f dk 1ka¢(k)-g(f::f?ﬁf;7 (1 - e(k.-ik vl))

> 1
Joax et Im e ey

(2‘”)31’1 62 A A\ oy
2 ———2-nrF (- V1) 4 N k‘Vl
) j dikae 2n2mk2 e 2n e dk k F'( ) ]
h R - 2
21 2x? |e(k,—ik-vl)|2 n Ie(k il )|
(5.89)
X, L E¥ RS,
where F( " ) o f f(v2) 6(—F__ - —E——J as before.

We now turn to the correlation term. According to (5.68) we need
£ (2! T 3 ). Tn oth
1 ES’tl + 0) gl/l(£2’tl/€ oty + o) =V D(€2, l,ga,t + g). In other
words, we need a two-time two-body distribution. Multiplying (5.739) by

-
£(E,t)),




79

2_ = > - -
3V D(£2,t2,€l,tl) .y asz(EQ,tQ,gl,tl)
Btz 20, axzu
n 3 (R.-X%,)
_ 0 o 2 73 2, - >
= = - VID(E S, T, 5T L t) dEy £ (V)
20 20,
[ . -
P 290 £ (BOE () (5.90)
m ov % 1472771 :
2a la

. - A 2 >
Here we have omitted the fl(EQ,tQ)-fl(El,tl) component of V D(£2,t2,

-—
El,tl) just as in (5.79) since it has no contribution to the correlation.

Equation (5.90) is to be solved subject to the initial condition

v2D(F. .t :E. .t =t
£psT1381,T)) at &, = t,.

-
To find V2D(£2,tl{gi,tl), we add to (5.90) its symmetrical counter

part by interchanging the subscripts 1 and 2, setting t2 = tl. The

result is

2 A 2 2 A -
Vv D(gQ,tl,gl,tl) . § ., A D(az,tl,gl,tl)
atl 521 jo ija
S
n (%, -x%,)
_ o 0 1737 2 A
v | = VID(Eg,.ty 5855t ) dEg £, (V)
la 1o
N
n 36 (X, %)
0 2 17737 2 & » A A

- e -t =
99(x. ~x,) 20 (X.-X.)
+ Il et 2L e R SAINA (5.91)
moVie  ila 20, 20
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- JEN 2
For t,; sufficiently large so that V2D(£2,tl; El,tl) relaxes to its

asymptotic form, (5.91) may be solved omitting the initial condition.

- -
This is then used in (5.80) to solve for D(Ez,tl + T;El,tl) which now

depends only on 1. Substituting this into (5.68), e2 < ElaElBO > can

be evaluated. This has been done by Rostoker.21 The result is

< EyoFige ?
Fe s w
- . - =
[ v v g N 2 2 e e Fl- )
2 (2m)? 07 (b K Ie(t,iw)|2
(5.92)
Integrating over o,
0
_i do < ElaBleo >
w
_ dk dw DA 2 2 ¥afg 2n FC- )
= 3 7 T (w + k-vl) (4m) n,e Tl 5
(2m) k le(?,iw)|
t3,
5 kakB F( ” )
= 2noe f dk —"5‘— *'—‘_\—'-_‘—‘:-7 (5.93)
k |e(k,-1k-vl)|
Since < E. E > does not depend on X,, Equation (5.57) is valid.

la"1B0 1

Furthermore, the last term in (5.66) vanishes. Putting (5.89) and

(5.93) in (5.66), we obtain

-~

L k-vl

' [

of ) s  2nge f 2 k, FY( " )
at, 2 I

1 Yo om Kt le(k,-fﬁ-¢i)|2

£




-
m kevy
; ,  2nge k. Xq (=)
- v Gy 2 dk =<3
lo 18 m k | e(k —ik.vl)|
-
m k'$]
5 5 2noe r N kakB F(—§~~)
T A >— J dk —5 = <= .71
lo 718 m k |e(k,—ik-vl)|
-
n KV
S
. 3 2noe f dj(' k_ F( k ) f
-
ST Kt ek, kv )]
A
m T<\"’1
QD
2n0e s T F( T ) 8fl
t—— | k5T (5.94)
m k |e(k,—ik-vl)| 1
-
k-‘x’zl
Letting U (5.94) can be rewritten as
3E on e > 3F(u. )
1:_3.{0 dx k [f(?;)——-—l
Era .
Y vy m k”la(i,—ik-‘\?l)lz b
Af. (V)
-F(u,) 11 ] (5.95)
1 aul

Equation (5.95) is the kinetic equation.lg

5.4 Discussion

We have seen in the previous sections, decoupling the set of the
generalized stochastic equations by using the cluster expansion and
freezing the lowest distribution, result in the Fokker-Planck or kinetic
equation. We have assumed that the elgctric field experienced by a
particle is of small order. This of course cannot be proved, and is

simply false when particles are close. There is, however, another
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problem. Actually, the force experienced by a particle consists of
forces due to a large number of other particles, and we have only assumed
each individual force is small. In other words the electric field

seen by the jth electron is given by

- N -
E. = ¥ Ei'
] i#9 ]
where
E = 0(e)

We wish to indicate it is reasonable to take

. o= o
507 ).

-
With the Fokker-Planck case, where norg = 0(1), Ej = 0(e) since the

rs. With the kinetic case,

summation actually only extends to N ~ ngr,

however, norg o O(%J. Let us write

where ?Zj = 0(1), §-= 0(e). To zeroth order the'?;j's are identically
distributed and independent, since the trajectories of the particles

are independent and have identical distribution. Thus E% > < ?;j > = 0,
as N » =, which indicates'fg is small.

When the cluster expansion was introduced, we required T, Q of

higher order than P. Actually this is not necessary for the case
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nyrg = 0(1). Also in this case, the omission of the initial correlation
is reasonable in most cases. In fact the contribution of the initial
correlation as given by (5.47) can be written as R,-V.t,,v,,0/

&1 %2V 00
-x e — . . . . .
xl—vltl,vl,o) with t, @ ty > This will be small if the difference

between the spatial arguments is large, which is the case with the

Vv, = ¥,. This is expressed by Sandri as "“the principle of

exception 5 1

absence of parallel motion.'fl8
For the kinetic case, the major problem is in the evaluation of
the correlation of the electric field since this involved the asymptotic
distribution of two particles. The following, however, is observed.
If the equilibrium distribution is used, the correlation is found to be

formally the same as given by (5.92),

< E1oF1go
A A W
XS k- —
_ r dw iwo ¢ dk 1k V1 (4 )2 kukB 2m F( k)
-4 on 3 ° Tk 2
(2m) k le(k,iw)]
where
-~ A
kKevy

F(u) = | fm(?}) §(u - 5)dv

and fm is the Maxwellian distribution. If the distribution function
fl differs from fm only in first order, then (5.92) may be expected
since only the zeroth order of F 1s needed.

Another way to obtain the fluctuation of the electric field is to

. . =, 22
make use of the concept of the dielectric constant e(k,iw) or the




8y

. S . . .

concept of dressed particles. While these techniques yield almost
immediate result, a mathematical justification, however, involves

. s 23
considerable difficulty.

= Y . . . 2

The term < Ela/él(O) =T, > gives the polarization effect, also
referred to as the field due to quasi-particles by Rostoker.9 Note
that in the kinetic case, this has an extra factor ---:;—Qg;i:—Ti
le(k,-ik-¥)|
compared to that in the Fokker-Planck case and in fact this factor is
the only difference between the kinetic and the Fokker-Planck equation.

. . . . 9
This force has been obtained by Gasiorowicz, et al.2 and Rostoker™ by
using the linearized Vlasov equation. The use of the Vlasov equation is
essentially justified, according to (5.80). However, in Rostoker's
calculation, the Vlasov equation is solved with either an external
driving force or a particular initial distribution, so that there
seems to be some arbitrariness. When an external force i1s assumed, it
is taken to be that due to an electron moving in its recti%}near orbit.
-ik.v.t

The resulting polarization force has an extra factor e , which is

not explained. Such a factor does not appear in our calculation and is

a the condition £,(0) =™ in < E, /£.(0) = Here 7)) =
ue to e condition El = nl in < la/gl 0) = nl >, ere nl =
S Y c . - I~ . ¥

(xl—vlt,v )', If the condition had been &l(O) =g = (xl,vl), the
factor e_lk'vlt will appear. Another point to be noted is that while

we obtain the polarization effect, no test particle is introduced
artificially.
The Fokker-Planck and the kinetic equations (5.59) and (5.95) have

been discussed in the literature.”’lg

It is to be emphasized that we
do not obtain these equations from the BBGKY hierarchy,although the

mathematics turn out to be similar. This similarity has deeper signifi-
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cance than it appears, as we will show in the next chapter, and justifies
to some extent the hybrid use of the conventional Fokker-Planck
equation and the BBGKY theory. The generalized stochastic equations,

of course, are applicable to very general situations.
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VI. FINAL REMARKS AND CONCLUSION

In the previous chapters we have shown how a set of generalized
stochastic (or generalized Fokker-Planck) equations can be used to
describe the evolution of a system. When applied to the Coulomb
potential problem, a strong similarity between the set of generalized
stochastic equations and the BBGKY hierarchy is observed. In fact, the
BBGKY hierarchy may be regarded as a special mode of generalized
stochastic equations. To see this let us take the limit t - 0 in
Equation (2.3D. All terms involving integration vanish, leaving

duw | d

5 = -3-<e F(x,0)/X(0) = x > w

t=0
Since we have chosen 0 arbitrarily as the initial time, in general, we

have

ow

- _ 9 =
T o < F(x,t)/X(t) = x > w

This equation is exact and a set of generalized stochastic equations
obtained in this manner is equivalent to the BBGKY hierarchy.* Thus,
in this sense, the BBGKY hierarchy may be regarded as a special mode
of generalized stochastic equations. Note that while it is not possible
to ignore the condition X(t) = x in < F(x,t)/X(t) = x > for all t,

since X(t) depends on F, it is possible to ignore the condition X(0) =

%

See appendix
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x in < F(x,t)/X(0) = x > provided there is no correlation between
F(x,t) and X(0).

Usually the FPokker-Planck equation is derived by using a Markov
model or using the Lagrange expansion.Q’2ur The coefficients are
averages of the force and no explicit condition is imposed. We have
seen in Chapter V that while we can drop the condition on the correlation
of the electric field, the exact condition is important in calculating
the polarization effect. In fact for a spatially homogeneous plasma,
the unconditional average of the electric field will be zero.

Our results may be summarized as follows. We modify Stratonovich's
results to obtain a set of generalized stochastic equations which
describe the higher distributions as well as the lowest forming a chain
similar to the BBGKY hierarchy. It is possible to obtain the kinetic
equation by decoupling this chain with the cluster expansion. This set
of generalized stochastic equations has the following characteristics
which distinguishes them from the conventional Fokker-Planck equation.
Firstly, the coefficients involve conditional averages of the force
taking into account the correlation of the force and initial position.
Moreover, the equations serve to describe higher distributions as well
as the lowest distribution, making it possible to determine the
coefficients without introducing certain models or appealing to other
theories. There is a similarity between the generalized stochastic
equations and the BBGKY hierarchy. In fact the BBGKY hierarchy may
be regarded as a special mode of the generalized stochastic equations.

For a plasma Sturrock,l Gasiorowicz, et.al.2 obtained essentially
the same Fokker-Planck equation. To determine the coefficients,

Gasiorowicz, et.al. use the Vlasov equation and a Holtsmark distribution.
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This may be inconsistent although we find the use of Vlasov equation is
essentially justified. Also we find that an artificially introduced
test particle is unnecessary. In an entirely opposite direction, a
kinetic equation on the basis of the BBGKY theory may be manipulated
into the form of a Fokker-Planck equation as done by Rostoker9 and
Tchen.lO Our approach is to regard the set of generalized stochastic
equations as basic from which the coefficients in the equation for the
lowest distribution are determined resulting in the kinetic equation.
In this case either approach involves similar mathematics. However,
the generalized stochastic equations are applicable for general
situations. We have considered several situations where the random
force is assumed to be specified, with some results comparable to those
of Sturrockl and Puri.7

We conclude that the generalized stochastic equations give a
general formulation applicable to self-consistent systems as well as to

systems with specified random forces.




89

APPENDIX

We give a heuristic argument to obtain the equation

ow

= < F(x,t)/X(t) = x > w (A.1)

|
b

The notations of Chapter III will be adopted.

Consider the system,

% = F(x,t) (A.2)

Let w(x,t) be the probability density of X(t). Firstly, we assume

F(x,t) is a given function. We have

w(xO,O) = w@p(t,tO,xO),t)J (A.3)

where J is defined by (3.2). Differentiating (A.3) with respect to

t, we obtain

d_uw ) = 0

dt
or
dwl ,t) dwl ,t) dJ _
J[——af + Fj (¢p,t) = 1+ w(y,t) T ° 0 (A.4)
NowL1L
dg _ dF.
a.{ = J ___]_ (A.S)
ox
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along the solution. Putting in (A.4), cancelling J, and replacing ¥ by

x, we have

dw(x,t) 0 -
Y + ij Fj(x,t)w(x,t) = 0 (A.6)

I1f the force F is random, we can write Equation(A.6) for each
sample F; here w(x,t) should be replaced by w(x,t/F), the conditional

density of X(t) given F. Thus,

du(x,t/F) 3 Fi(x,0ux,t/F) = 0 (A.7)

ot X
]

Averaging over the function space of F,

awé:’t) * aij f Fy(x,t)u(x,t/F)AP(F) = 0 (A.8)

where P(F) is the distribution of the force F. Formally we take
w(x,t/F)AP(F) = w(x,t)dP(F/X(t) = x) (A.9)

according to the usual rules on conditional probability. Here
P(F/X(t) @ x) is the distribution of F given X(t) = x. (A.8) then

yields

ng:,t) + aij i Fj(x,t)dP(F/X(t) = x) w(x,t) =0




or

dw(x,t)
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9

+

ot )4

which is (A.1)

Let us apply the

(. ,t)
of (gt
Btl +

Now < \./‘l(t) /?l

1
[ne]
|
3|+
—

Putting in (A.10),

SR ARY
m____.

< Fj(x,t)/X(t) = x > w(x,t) =0
]

result to (5.1) with j @ 1. (A.6) gives

3 .l( - = e - -
5§1ﬂ< Vi t)/X (t) = X5 Vl(t) = v > £

9

3-‘
vy %

Xl,

(t) =‘>‘<l, Vlu-) - ?’1 > = 'v‘l,

/Yl(t) =%y, V(t) =TV >
3 (X, - X.(1)),> - -
- 1 ] /Xl(t) = Xl, Vl..(t) = Vl >
X

1

L e (T, 1) dt
Eg_ﬂii —'Qj) \Y 2°°1° ’ J
9% "'
1 1 -

3 o o - - 1
_‘—(X"X)f(gsgat)dg‘ —
3;1 1 27 to Yoy 5o 2 fl(g’t)

1 8¢ - o S _-\
- 1 (r) = Vl(t) = v. >
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-
af (£, ,t) of
1'°1° =71 ng 2 3d (X, - X,) e -
Bxl avl Bxl

which is the first equation in the BBGKY hierarchy. The entire hierarchy

including the Liouville equation can be obtained in a similar manner.
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